trigonometry math

Start Free Trial

What is sin(x+y) if sinx+cosy=1/4 and cos x+siny=1/2 ?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

sin (x + y) = sin x* cos y + cos x * sin y

It is given that sin x + cos y = 1/4 and cos x + sin y = 1/2

sin x + cos y = 1/4

square the two sides

=> (sin x)^2 + (cos y)^2 + 2*sin x*cos y = 1/16 ...(1)

cos x + sin y = 1/2

square both the sides

=> (sin y)^2 + (cos x)^2 + 2*sin y*cos x = 1/4 ...(1)

(1) + (2)

=> (sin x)^2 + (cos y)^2 + 2*sin x*cos y + (sin y)^2 + (cos x)^2 + 2*sin y*cos x = 1/16 + 1/4

use the property (sin a)^2 + (cos x)^2 = 1

=> 2 + 2*sin x*cos y + 2*sin y*cos x = 5/16

=> 2*sin x*cos y + 2*sin y*cos x = 5/16 - 2

=> sin x*cos y + sin y*cos x = 5/32 - 1

=> sin x*cos y + sin y*cos x = -27/32

The value of sin (x + y) = -27/32

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial