A child leaps on a skateboard: A 35 kg girl is running at a speed of 2.8 m/s when she jumps on a stationary skateboard. If the system consisting of the girl and the skateboard begins rolling at a speed of 2.6 m/s, what is the mass of the skateboard?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The question doesn't appear completely, and I can't fix it after editing:

A child leaps on a skateboard: A 35 kg girl is running at a speed of 2.8 m/s when she jumps on a stationary skateboard. If the system conssting of the girl and the skateboard begins rolling at a speed of 2.6 m/s, what is the mass of the skateboard?



To answer this, we should not that momentum is conserved:

`p_i = p_f` (initial momentum is the same as the total final momentum)

Momentum is the product of mass and velocity:

`p = mv`

Initial momentum and final momentum both consists of the momentum of the girl and the skateboard. The initial momentum is:

`p_i = m_(g i r l)v_(g i r l) + m_(b o a r d)v_(b o a r d)`

`p_i = 2.8*35 + m_(b o a r d)*0 = 98 + 0 = 98N`

The skateboard doesn't have a momentum because it is at rest. The final momentum is caused by the new system, a girl on the skateboard. Hence,

`p_f = m_(g i r l - o n - b o a r d)v_(g i r l - o n - b o a r d)`

Note that the mass would be the total mass of the girl and the skateboard:

`p_f = (m_(b o a r d) + 35)*2.6 = 2.6*m_(b o a r d) + 91`

Since momentum is conserved, this is just equal to 98N, the initial momentum:

`2.6*m + 91 = 98`

`2.6*m = 98 - 91`

`2.6*m = 7`

`m = 2.69 kg`

Hence, the skateboard is 2.69 kilograms.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial