Student Question

If x=1 is the root of 5x^3-4x^2+7x-8=0, what are the other roots of equation? (use the remainder theorem)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Using the remainder theorem, as x = 1 is a root of the expression 5x^3-4x^2+7x-8=0, the expression is divisible by ( x - 1).

(ax^2 + bx + c)(x - 1) = 5x^3-4x^2+7x-8

=> ax^3 + bx^2 + cx - ax^2 - bx - c = 5x^3-4x^2+7x-8

=> a = 5

=> b - a = -4 => b = -4 + 5 = 1

=> c - b = 7 => c = 8

5x^2 + x + 8 = 0

=> x1 = [-1 + sqrt (1 - 160)]/10

=> x1 = -1/10 + i*sqrt 159 /10

x2 = -1/10 - i*sqrt 159 / 10

Therefore the other roots of the expression are -1/10 + i*sqrt 159 /10 and -1/10 - i*sqrt 159 / 10

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial