What is the first term of arithmetic sequence if the sum a1+a2+...a13=130?

a4,a10,a7 are also consecutive terms of geometric sequence

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Let the first term of the arithmetic sequence be a and the common difference be d.

(a + a + 12d)*(13/2) = 130

=> 2a + 12d = 20

=> a + 6d = 10

=> a = 10 - 6d

a4, a10 and a7 are consecutive terms of a geometric series:

=> (a + 9d) / (a + 3d) = (a + 6d) / (a + 9d)

=> (10 - 6d + 9d) / (10 - 6d + 3d) = (10 - 6d + 6d) / (10 - 6d + 9d)

=> (10 + 3d) / (10 - 3d) = 10 / (10 + 3d)

=> 100 + 9d^2 + 60d = 100 - 30d

=> 9d^2 + 90d = 0

=> d( d + 10) = 0

=> d = 0 and d = -10

So the first term of the series = 10 - 6*d can be 10 or 70

The required value of the first terms of the AP can be 10 or 70.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial