It is given that x = 5*cos t and y = 3*sin t. We have to find the equation of the tangent if t = pi/4

When t = pi/4 , x = 5*(1/sqrt 2) and y = 3/sqrt 2

dx/dt = -5*sin t and dy/dt = 3*cos t

dy/dx = (dy/dt)/(dx/dt)

=> 3*cos t/ -5*sin t

=> (-3/5)/tan t

at t = pi/4

=> -3/5

The equation of the tangent is (y - 3/sqrt 2)/(x - 5/sqrt 2) = -3/5

=> 5y - 15/sqrt 2 = -3x + 15/sqrt 2

=> 3x + 5y - 30/sqrt 2 = 0

**The equation of the tangent is 3x + 5y - 30/sqrt 2 = 0**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.