**Solve the equation 5cos^2x-6tanx*cosx=cos^2x-5sin^2x-1.**

We have to solve 5(cos x)^2 - 6 tan x*cos x = (cos x)^2- 5*( sin x)^2 - 1

5(cos x)^2 - 6 tan x*cos x = (cos x)^2- 5*( sin x)^2 - 1

=> 5(cos x)^2 + 5*( sin x)^2 - 6 tan x*cos x = (cos x)^2 - 1

we know (cos x)^2 + ( sin x)^2 = 1

=> 5 - 6 tan x*cos x = (cos x)^2 - 1

=> 6 - 6 (sin x/ cos x)* cos x = (cos x)^2

=> 6 - 6 sin x = 1 - (sin x)^2

let y = sin x

=> 6 - 6y = 1 - y^2

=> y^2 - 6y+ 5 = 0

=> y^2 - 5y - y + 5 = 0

=> y( y - 5) - 1(y - 5) = 0

=> (y - 1)(y - 5) = 0

y = 1 or 5

As y = sin x, we can ignore x = 5.

So sin x = 1

x = arc sin (1)

x = pi/2 + 2*n*pi

**Therefore x = pi/2 + 2*n*pi**

**Solve the equation 5sinx=4cosx**

To solve the equation 5sinx = 4cosx, first, bring all terms to one side of the equations, so that the other side becomes 0:

5sinx - 4cosx = 0.

Then, factor out 4cosx from the right hand side:

4cosx((5sinx)/(4cosx) - 1) = 0.

The product equals zero when either of the factors is zero, so

cos(x) = 0 or (5sinx)/(4cosx) - 1 = 0.

If cos(x) = 0, then sin(x) also has to be zero in order for the original equation to be true. However, it is impossible for cos(x) and sin(x) to be zero simultaneously (for the same values of x). Therefore, cos(x) = o does not yield valid solutions.

If (5sinx)/(4cosx) - 1 = 0, then

5/4 tan(x) = 1, or

tan(x) = 4/5

This equation has solutions of the form

**x = arctan(4/5) +pi*k, where k is an integer.**

Arctan(4/5) is about 38.7 degrees, or 0.675 radians.

Dividing the original equation 5sinx = 4cosx by cosx will also result in the correct answer in this case. However, dividing equation by a variable or a function that can have the value of zero should be done with caution, as it could result in missing some of the possible solutions. In this case, cosx cannot be zero, as shown in the solution above, so dividing by cosx does not present a problem.

**Solve the equation 5sinx=4cosx**

The previous educator's post is a perfectly reasonable, conventional way of solving the problem of 5 sin x = 4 cos x. Namely, to recognize that the tangent function (tanx) is equivalent to (sinx)/(cosx), and then simply defining the solution as arctan(4/5). I would add that arctan might appear on a graphing utility as tan^-1(x), and is not to be confused with cot(x).

Next, I would add that this problem can be solved with a graphing utility by moving both functions to one side of the equation and graphing the function, as follows:

5 sin x - 4 cos x = 0. This results in intercepts of .675, 3.816, 6.958, etc.

**Solve the equation 5sinx=4cosx**

We have to solve 5 sin x = 4 cos x

5 sin x = 4 cos x

=> sin x / cos x = 4/5

=> tan x = (4/5)

=> x = arc tan (4/5)

**Therefore x = arc tan (4/5) + n*pi**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.