find the equation of a circle through (0,5),(3,4), touching the line y+5=0.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The general equation of a circle has three variables, if the center is (a, b) and r is the radius: (x - a)^2 + (y - b)^2 = r^2.

You have provided two points through which the circle passes (0,5) and (3,4) and a tangent line to the circle y + 5 = 0

Now, as the line y + 5 = 0 is a tangent, the y-coordinate of the point that touches the line is -5. The point (0, 5) lies on the other end of the circle. This gives the radius of the circle as 5.

So we have a^2 + (5 - b)^2 = 25

and (3 - a)^2 + (4 - b)^2 = 25

(3 - a)^2 - a^2 + (4 - b)^2 - (5 - b)^2 = 25

=> (3 - a - a)(3 - a + a) + (4 - b - 5 + b)(4 - b + 5 - b) = 0

=> 3(3 - 2a) - 1(9 - 2b) = 0

=> 9 - 6a - 9 + 2b = 0

=> 6a = 2b

=> 3a = b

Substitute in a^2 + (5 - b)^2 = 25

=> a^2 + (5 - 3a)^2 = 25

=> a^2 + 25 + 9a^2 - 30a = 25

=> 10a^2 - 30a = 0

=> 10a(a - 3) = 0

=> a = 0 and a = 3

b = 0 and b = 9

The equation of the required circle can be x^2 + y^2 = 25 and (x - 3)^2 + (y - 9)^2 = 25

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial