What is basically meant by the NORMALIZATION OF A WAVE FUNCTION in quantum mechanics?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

In quantum mechanics the movement (more precisely, the state) of a particle in time is described by Schrodinger's equation, a differential equation involving a wave function, psi(x,t).

|psi(x,t) |^2 is interpreted to be the probability density of a particle moving in time; that is, the probability that the particle lies in-between x=0 and x=1 is: Integral (|psi(x,t)|^2) dx from x=0 to 1.

To answer your question, normalizing a wave function means to multiply it by a constant such that Integral (|psi(x,t)|^2) dx from -infinity to infinity = 1. In plain English, the particle has to be somewhere on x at any given time, 100% of the time. So normalizing the wave function simply ensures that |psi(x,t)|^2 can be interpreted as a probability density function.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial