a man is standing 12 feet above the ground on a platform. he throws a ball up in the air with an initial velocity of 20 ft/sec.


a-find the equations modeling the height of the ball and the velocity of the ball in simplest form

b-when will the ball reach its max height?

c-what is the velocity at the time the ball reaches the max height?

d-what is the velocity of the ball when it hits the ground?

 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The man standing on a platform at a height of 12 ft. from the ground throws a ball vertically upwards at 20 ft/s.

The velocity of the ball at any time t is given by V = 20 - 32.17*t ft/s

The height of the ball at time t is H = 20*t - (1/2)*32.17*t^2 ft.

When the ball reaches it maximum height, its velocity is 0. The time t when the ball reaches its maximum height is given by 0 = 20 - 32.17*t

=> t = 20/32.17 s.

The velocity of the ball when it returns to its 12 ft high base is 20 ft/s in a direction vertically downwards. The velocity gained in moving down 12 ft is sqrt(2*32.17*12). The velocity of the ball when it hits the ground is 20 + sqrt(2*32.17*12) = 47.78 ft/s.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial