A Mathematician's Apology

by G. H. Hardy

Start Free Trial

Critical Overview

Download PDF PDF Page Citation Cite Share Link Share

In his review of A Mathematician’s Apology in the Spectator, British author Graham Greene asserts that Hardy’s philosophy is akin to the philosophy of an artist. ‘‘The real mathematician,’’ according to Greene, ‘‘must justify himself as an artist.’’ Indeed, Hardy’s work is a very successful justification of the mathematician as artist, much in the literary tradition that includes The Autobiography of Benvenuto Cellini; Vincent Van Gogh’s letters to his brother Theo; and, as Greene points out, the work of Henry James. Greene writes, ‘‘I know no writing—except perhaps Henry James’s introductory essays—which conveys so clearly and with such an absence of fuss the excitement of the creative artist.’’

While the ‘‘uninitiated’’—that is, non-mathematicians such as Greene—were apt to focus on the work as an artist’s memoir, those with more rigorous mathematical training focused on the rift within the field of mathematics that A Mathematician’s Apology brought to the fore. As the anonymous reviewer in the Times Literary Supplement observes, ‘‘‘Real’ mathematics deals only with the ultimate abstractions of number, and, if not in itself incapable of being put to ‘use,’ at least becomes only occasionally and accidentally useful.’’ ‘‘Applied’’ mathematics, on the other hand, deals with numbers as useful scientific tools, which helps bring about innovation. Its definition implies utility, or usefulness, and is the opposite of the ‘‘math-as-art philosophy’’ Hardy espouses throughout the book. And true to Hardy’s lifelong reputation for his candid opinions, Hardy did not hold back the scorn and derision he felt for the functional uses of mathematics. He refers to chess problems, for instance, as ‘‘trivial,’’ regardless of their relative degrees of difficulty, and he similarly belittles applied mathematicians and their work throughout the book.

Hardy sums up this attitude at the beginning of chapter 28:

There are then two mathematics. There is the real mathematics of the real mathematicians, and there is what I call the ‘‘trivial’’ mathematics, for want of a better word. The trivial mathematics may be justified by arguments that would appeal to [Lancelot] Hogben, or other writers of his school, but there is no such defense for the real mathematics, which must be justified as art if it can be justified at all.

Ironically, Hogben, the mathematician for whom Hardy reserved the word ‘‘trivial,’’ appears to have been unaffected by the criticism. In fact, a late edition of Hogben’s book, Mathematics for the Million, was reviewed in tandem with the reprint of A Mathematician’s Apology in 1967 in the Times Literary Supplement, as a vivid illustration of the disagreement between the two views. As the reviewer notes, ‘‘For [Hardy] Hogben is ‘admittedly not a mathematician’ and ‘real’ mathematics is to Hogben ‘merely an object of contemptuous pity.’’’ Despite the profound differences between the two works, the reviewer writes that they both ‘‘deserve the immortality they appear to have achieved.’’

Get Ahead with eNotes

Start your 48-hour free trial to access everything you need to rise to the top of the class. Enjoy expert answers and study guides ad-free and take your learning to the next level.

Get 48 Hours Free Access
Next

Essays and Criticism