if y= 147x^4+28x^3-12x^2+10 on the closed interval [-20,20], use calculus and sign analysis to find the exact values for the x-coordinates of all ...

if y= 147x^4+28x^3-12x^2+10 on the closed interval [-20,20], use calculus and sign analysis to find the exact values for the x-coordinates of all absolute maxima, absolute minima,local maxima,local minima.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Given `f(x)=147x^4+28x^3-12x^2+10` on [-20,20]:

The extrema must occur at critical points -- since this is a polynomial the critical points will be where f'(x)=0. To check for absolute maximum and minimum we also check the endpoints.

`f'(x)=588x^3+84x^2-24x`

`=12x(49x^2+7x-2)`

`=12x(7x-1)(7x+2)`

Letting f'(x)=0 we get the following critical points:

`x=0,1/7,-2/7`

We evaluzte f(x) at the critical points and the endpoints of the interval:

`f(-20)=23291210`

`f(-2/7)~~9.3469`

`f(0)=10`

`f(1/7)~~9.89796`

`f(20)=23739210`

So the function on this interval has an absolute maximum at x=20.

Checking convenient values we find that on the interval:

`[-20,-2/7):f'(x)<0` so the function is decreasing on this interval

`(-2/7,0):f'(x)>0` so the function is increasing on this interval.

At `x=-2/7` there is an absolute minimum on the interval.

`(0,1/7):f'(x)<0` so the function is decreasing on this interval.

There is a local maximum at x=0.

`(1/7,20]:f'(x)>0` so the function is increasing on this interval.

There is a local minimum at `x=1/7` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial