`x + y = 4 , y = x , y = 0` Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the plane region about the x-axis.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We can use a rectangular strips to represent the region bounded by `x+y=4,` `y=0` , and `y=x` revolved about the x-axis. As shown on the attached graph, we consider two sets of rectangular strip perpendicular to the x-axis (axis of revolution) to be able to use the Disk Method.  This is the case since the upper bound of the rectangular strip differs before and after` x=2` .

 In this method, we follow the formula:` V = int_a^b A(x) dx` since we are using a vertical orientation of each rectangular strip with a thickness =dy.

Note: `A = pir^2` where r= length of the rectangular strip.

 We may apply `r = y_(above) - y_(below)` .

For the region within the boundary values of x: `[ 0,2]` , we follow `r = x-0=x`

For the region within the boundary values of x: `[ 2,4]` , we follow `r = 4-x-0=4-x`

Note: `x+y=4` can be rearranged as `y=4-x.`

Then the integral set-up will be:

`V = int_0^2 pi*(x)^2dx+int_2^4 pi*(4-x)^2dx`

For the first integral: `int_0^2 pi*(x)^2dx` , we may apply Power rule of integration: `int x^n dx = x^(n+1)/(n+1)` .

`int_0^2 pi*(x)^2dx= pi* x^((2+1))/((2+1))|_0^2`

                       ` =(pix^3)/3|_0^2`

Apply definite integration formula: `int_a^b f(y) dy= F(b)-F(a)` .

`(pix^3)/3|_0^2 =(pi(2)^3)/3-(pi(0)^3)/3`

          ` =(8pi)/3- 0`

          ` =(8pi)/3`

For the indefinite integral of `int_2^4 pi*(4-x)^2dx` , we may u-substitution by letting `u =4-x` then `du =-dx` or `(-1)du =dx` .

The integral becomes :

`int pi*(4-x)^2dx =int pi*u^2*(-1) du`

Apply basic integration property: `intc*f(x) dx = c int f(x) dx.`

`int pi*u^2*(-1) du = -pi int u^2 du`

Apply power rule for integration: `int x^n dy= x^(n+1)/(n+1).`

`-pi int u^2 du =-pi* u^((2+1))/((2+1))`

                      `= (-piu^3)/3`

Plug-in` u=4-x ` on `(-piu^3)/3`  we get:

`int_2^4 pi*(4-x)^2dx =(-pi(4-x)^3)/3|_2^4 or ((x-4)^3pi)/3|_2^4`

Apply the definite integral formula: `int _a^b f(x) dx = F(b) - F(a)` .

`((x-4)^3pi)/3|_2^4 =((4-4)^3pi)/3-((2-4)^3pi)/3`

                 ` = 0 - (-8pi)/3`

                ` = (8pi)/3`

Combing the two definite integrals, we get:


`V = int_0^2 pi*(x)^2dx+int_2^4 pi*(4-x)^2dx`

`V = (8pi)/3+(8pi)/3`

`V =(16pi)/3` or `16.76 ` (approximated value).

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Image (1 of 1)
Approved by eNotes Editorial