Expert Answers

An illustration of the letter 'A' in a speech bubbles

`x^4-10x^3+x^2-10x+1=0`

Divide whole equation by `x^2` (we can do this because `x=0` is obviously not a solution). 

`x^2-10x+1-10/x+1/x^2=0`

Now we make substitution `y=x+1/x` but first we regroup the terms of the equation.

`(x^2+2+1/x^2)+(-10x-10/x)-1=0`

`(x+1/x)^2-10(x+1/x)-1=0`

`y^2-10y-1=0`  

Now we can use quadratic formula.

`y_(1,2)=(10pmsqrt(100+4))/2`

`y_1=(10-2sqrt26)/2=5-sqrt26`

`y_2=5+sqrt26`

Now we return to our substitution.

For `y_2` we get

`x+1/x=5+sqrt26`

`(x^2+1)/x=5+sqrt26`  ` `

Multiply by `x.`

`x^2-(5+sqrt26)x+1=0`

Apply quadratic equation.

`x_(1,2)=(5+sqrt26pmsqrt((5+sqrt26)^2-4))/2=`

`(5+sqrt26pmsqrt(47+10sqrt26))/2`

`x_1=(5+sqrt26-sqrt(47+10sqrt26))/2`

`x_2=(5+sqrt26+sqrt(47+10sqrt26))/2`

`x_1` and `x_2` are first two solutions. 

Now we put `y_1` into our substitution.

`x+1/x=5-sqrt26`

`(x^2+1)/2=5-sqrt26`

`x^2-(5-sqrt26)x+1`  

Apply quadratic formula.

`x_(3,4)=(5-sqrt26pmsqrt(47-10sqrt26))/2`

`x_3=(5-sqrt26-i sqrt(10sqrt26-47))/2` <-- Third solution 

`x_4=(5-sqrt26+isqrt(10sqrt26-47))/2`  <-- Fourth solution

Solutions of the equation are `x_1,x_2,x_3,x_4.`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial