What is x if 4*tg(3x) + 4*tg(2x) + 5*tg(x) = 0 ?


Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use the following trigonometric identities, such that:

`tan 2x = (2tan x)/(1 + tan^2 x)`

`tan 3x = tan (2x + x) = (tan 2x + tan x)/(1 + tan 2x*tan x) `

`tan 3x = ((2tan x + tan x + tan^3 x)/(1 + tan^2 x))/((1 + 3tan^2 x)/(1 + tan^2 x))`

Reducing duplicate terms yields:

`tan 3x = (tan x(2tan x + tan x + tan^3 x))/(1 + 3tan^2 x)`

`tan 3x = (tan x(3 + tan^2 x))/(1 + 3tan^2 x)`

Substituting `(2tan x)/(1 + tan^2 x)` for `tan 2x` and `(tan x(3 + tan^2 x))/(1 + 3tan^2 x)` for `tan 3x` yields:

`4(tan x(3 + tan^2 x))/(1 + 3tan^2 x) + (8tan x)/(1 + tan^2 x) + 5 tan x = 0`

Factoring out `tan x` yields:

`tan x ((4(3 + tan^2 x))/(1 + 3tan^2 x) + 8/(1 + tan^2 x) + 5) = 0`

You need to solve for x the equations `tan x = 0` and `((4(3 + tan^2 x))/(1 + 3tan^2 x) + 8/(1 + tan^2 x) + 5) = 0` , such that:

`tan x = 0 => x = arctan 0 + n*pi => x = n*pi, n in Z`

`((4(3 + tan^2 x))/(1 + 3tan^2 x) + 8/(1 + tan^2 x) + 5) = 0`

`4(3 + tan^2 x)(1 + tan^2 x) + 8(1 + 3tan^2 x) + 5(1 + 3tan^2 x)(1 + tan^2 x) = 0`

`12 + 16tan^2 x + 4tan^4 x + 8 + 24tan^2 x + 5 + 20tan^2 x + 15tan^4 x = 0`

`19tan^4 x + 60tan^2 x + 25 = 0`

You may use the following substitution, such that:

`tan^2 x = t`

`19t^2 + 60t + 25 = 0`

Using quadratic formula yields:

`t_(1,2) = (-60 +- sqrt(3600 - 1900))/38`

`t_(1,2) = (-60 +- sqrt(1700))/38`

Since `t_(1,2) < 0` , hence, there exists no value for x such that `tan^2 x = t.`

Hence, evaluating the solutions to the given trigonometric equation yields  `x = n*pi, n in Z` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial