What is the the degree of polynomial P defined by : P(x) = -5(x - 2)(x^3 + 5) + x^5?

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We have P(x) = -5(x - 2)(x^3 + 5) + x^5

P(x) = -5(x - 2)(x^3 + 5) + x^5

=> P(x) = (-5x + 10)(x^3 + 5) + x^5

=> P(x) = -5x^4 - 25x + 10x^3 + 50 + x^5

=> P(x) = x^5 - 5x^4 + 10x^3 - 25x + 50

The degree of a polynomial is the highest power of x in the expression.

Here the degree is 5

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

The degree of a polynomial is the highest power of x.

For example:

f(x) = x^3 -4x^2 +1  ==> f(x) is a third degree polynomial.

To determine the degree of the given polynomila, we will need to open the brackets and rewrite into terms.

Let us open the brackets.

==> P(x) = -5(x-2)(x^3 + 5) + x^5

==> P(x) = -5 (x^4 + 5x^2 -2x^3 -10) + x^5

==> P(x) = x^5 - 5x^4 -+10x^3 -25x^2 -10

We notice that the highest power is x^5

Then the polynomial is a fifth degree.

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

The degree of a polynomial is the largest exponent when the polynomial is written in standard form. So, expand this polynomial into standard form:

5(x - 2)(x3 + 5) + x5 =

x^5+5 x^4-10 x^3+25 x-50

So this polynomial is of degree 5.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial