what is the limit of lim x->p/2 (tan(x-(p/2)))/(x-(p/2)+cos(x))

note that x approach to (p/2) and lim x->p/2 (tan(x-(p/2)))/(x-(p/2)+cos(x)) not lim x->p/2 (tan(x-(p/2)))/(x-(p/2)) + cos(x)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

There is a small mistake there.

It should be corrected as follows,

`lim_(x-gtpi/2)tan(x-pi/2)/((x-pi/2)+cos(x)) = lim_(x->pi/2)(sec^2(x-pi/2))/(1-sin(x))`

` lim_(x->pi/2)(sec^2(x-pi/2))/(1-sin(x)) = 1/(1-1) = +oo`

 Therefore,

`lim_(x-gtpi/2)tan(x-pi/2)/((x-pi/2)+cos(x)) = +oo`

Now if you look at (1-sin(x)), the maximum sin(x) can achieve is 1, that is at pi/2, but when x is approaching to pi/2, sin(x) is not 1, it is a value little below 1. So (1- sin(x)) is positive. Therefore the limit is + infinity.

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

`lim_(x-gtpi/2)tan(x-pi/2)/((x-pi/2)+cos(x))`

If you try to evaluate the limit straight away, you get an indeterminate answer 0/0. In such situations you can use the l'hopitals rule.

`lim_(x-gta)(f(x))/(g(x)) = lim_(x-gta)(f'(x))/(g'(x))`

`f(x) = tan(x-pi/2)`

So, `f'(x) = sec^2(x-pi/2)`

`g(x) = (x-pi/2)+cos(x)`

`g'(x) = 1-sin(x)`

Therefore,

`lim_(x-gtpi/2)tan(x-pi/2)/((x-pi/2)+cos(x)) = lim_(x->pi/2)(sec^2(x-pi/2))/(1-cos(x))`

`lim_(x->pi/2)(sec^2(x-pi/2))/(1-cos(x)) = 1/(1-1) = +oo`

Therefore,

`lim_(x-gtpi/2)tan(x-pi/2)/((x-pi/2)+cos(x)) = +oo`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial