What is `lim_(x->0) (1-(cos(2x))^n)/(x^2)`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The limit `lim_(x->0) (1-(cos(2x))^n)/(x^2)` has to be determined.

`lim_(x->0) (1-(cos(2x))^n)/(x^2)`

Substituting x = 0 gives the indeterminate form `0/0` . This allows the use of l'Hopital's rule and the denominator and numerator can be substituted with their derivatives.

=> `lim_(x->0) (2*n*(cos 2x)^(n-1)*sin 2x)/(2x)`

Again, substituting x = 0 gives 0/0,

=> `lim_(x->0) (2*n*sin 2x*(n - 1)*(cos 2x)^(n - 2)*(-sin 2x)*x + 2*n*(cos 2x)^(n - 1)*cos 2x*2)/2`

substituting x = 0 gives

`(0 + 2*n*1*1*2)/2`

=> 2*n

The limit `lim_(x->0) (1-(cos(2x))^n)/(x^2)` = `2n`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial