What are a b?

f(x)=ax+b isomorphism in structure rings (r,+,*), (r,t,o)

xty=x+y-2

xoy=1/4xy-1/2(x+y)+3

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to find the identity element for `x t y = x + y - 2` , hence, there exists an element `e_t in R` , such that for each element `x in R` , the following identity holds:

`x te_t = e_t t x = x`

`x +e_t - 2 = x => e_t = 2`

You need to find the identity element for `xoy = (1/4)xy - (1/2)(x+y)+3` , hence, there exists an element `e_o in R` , such that for each element `x in R` , the following identity holds:

`x o e_o = e_o o x`

`(1/4)xe_o - (1/2)(x + e_o) + 3 = x`

`(1/4)xe_o - (1/2)(x) - (1/2)(e_o) + 3 = x`

You need to isolate the terms that contain `e_o`  to the left side, such that:

`(1/4)xe_o- (1/2)(e_o) = x - 3 + x/2`

You need to factor out `(1/2)(e_o)`  to the left side such that:

`(1/2)(e_o)(x/2 - 1) = (3x)/2 - 3`

You need to factor out 3 to the left side such that:

`(1/2)(e_o)(x/2 - 1) = 3(x/2 - 1)`

You need to reduce duplicate factors such that:

`(1/2)(e_o) = 3 => e_o = 6`

Notice that the identity element for addition is `e_+ = 0`  and the identity element for multiplication is `e_* = 1` .

Since the problem provides the information that `f(x) = ax + b`  is an isomorphism of groups, hence, the following equations hold, such that:

`{(f(0) = 2),(f(1) = 6):} => {(a*0 + b = 2),(a*1 + b = 6):}`

`{(b = 2),(a +2 = 6):} => {(b = 2),(a = 6 - 2):} => {(b = 2),(a = 4):}` 

Hence, evaluating the coefficients a and b yields `a = 4`  and `b = 2,`  thus `f(x) = 4x + 2` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial