Verify using an example that a.(b.c)=(a.b).c is not true.  Explain your reasoning both numerically and by using the definition of the dot product.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

For three vectors:

  • a = (ax)i + (ay)j + (az)k
  • b = (bx)i + (by)j + (bz)k
  • c = (cx)i + (cy)j + (cz)k,

a.b = (ax)(bx) + (ay)(by) + (az)(bz) and b.c = (bx)(cx) + (by)(cy) + (bz)(cz)

a.(b.c)= a. [(bx)(cx) + (by)(cy) + (bz)(cz)]

=> [(ax)i + (ay)j + (az)k]*[(bx)(cx) + (by)(cy) + (bz)(cz)]

=> (ax)[(bx)(cx) + (by)(cy) + (bz)(cz)]i + (ay)[(bx)(cx) + (by)(cy) + (bz)(cz)]j + (az)[(bx)(cx) + (by)(cy) + (bz)(cz)]k

=> [(ax)(bx)(cx) + (ax)(by)(cy) + (ax)(bz)(cz)]i + [(ay)(bx)(cx) + (ay)(by)(cy) + (ay)(bz)(cz)]j + [(az)(bx)(cx) + (az)(by)(cy) + (az)(bz)(cz)]k ...(1)

(a.b).c =

[(ax)(bx) + (ay)(by) + (az)(bz)].c

=>[(ax)(bx) + (ay)(by) + (az)(bz)][(cx)i + (cy)j + (cz)k]

=> [(ax)(bx) + (ay)(by) + (az)(bz)](cx)i + [(ax)(bx) + (ay)(by) + (az)(bz)](cy)j + [(ax)(bx) + (ay)(by) + (az)(bz)](cz)k

=> [(ax)(bx)(cx) + (ay)(by)(cx) + (az)(bz)(cx)]i + [(ax)(bx)(cy) + (ay)(by)(cy) + (az)(bz)(cy)]j + [(ax)(bx)(cz) + (ay)(by)(cz) + (az)(bz)(cz)]k ...(2)

As can be seen (1) is not equal to (2)

This is easier to see as a numerical example:

a = i + 2j + 3k, b = 4i + 5j + 6k and  c = 7i + 8j + 9k,

a.(b.c)= [1*4*7 + 1*5*8 + 1*6*9]i + [2*4*7 + 2*5*8 + 3*6*9]j + [3*4*7 + 3*5*8 + 3*6*9]k

=> 122i + 244j+ 366k

(a.b).c = [1*4*7 + 2*5*7 + 3*6*7]i + [1*4*8 + 2*5*8 + 3*6*8]j + [1*4*9 + 2*5*9 + 3*6*9]k

=> 224i+ 256j + 288k

As can be seen 122i + 244j+ 366k is not the same as 224i+ 256j + 288k.

Therefore it is proved that a.(b.c)=(a.b).c is not true

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial