Using integration by parts, we find that `int x^(n)e^(-x) dx=`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The integral `int x^n e^-x dx` has to be determined.

Integration by parts gives us the rule: `int u dv = u*v - int v du`

Let `u = x^n` and `dv = e^-x dx`

  `du = n*x^(n-1) dx`

`v = -e^(-x)`

`int x^n e^-x dx`

`= x^n*-1*e^-x - int -1*e^-x*n*x^(n-1) dx`

= `x^n*-1*e^-x + n*int e^-x*x^(n-1) dx`

= `-x^n*e^-x + n*int e^-x*x^(n-1) dx`

`int e^-x*x^(n-1) dx`

= `-x^(n-1)*e^-x + (n-1)*int e^-x*x^(n-2) dx`

Substituting this in the original integral

`int x^n*e^-x dx`

= `-x^n*e^-x + n*(-x^(n-1)*e^-x + (n-1)*int e^-x*x^(n-2) dx)`

= `-x^n*e^-x- n*x^(n-1)*e^-x + n*(n-1)*int e^-x*x^(n-2) dx`

= `-e^-x*(x^n+n*x^(n-1))+n*(n-1)*int e^-x*x^(n-2) dx`

This can be continued n times to yield the final result.

= `-e^-x*(x^n+n*x^(n-1)+ n*(n-1)x^(n-2)+...n!)`

The integral `int x^n*e^(-x)``dx` = `-e^-x*(x^n+n*x^(n-1)+ n*(n-1)x^(n-2)+...n!) + C`

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

The formula for the integration by parts is as follows:

`int udv = uv - int vdu`

To take the given integral by parts, let

`u = x^n`

and `dv = e^(-x) dx`

Then, `du = nx^(n- 1)` and `v = -e^(-x)`

Plugging these into the formula, we get

`int x^n e^(-x) dx = x^n(-e^(-x)) - int (-e^(-x))nx^(n-1)dx`

`= -x^n e^(-x) + n int x^(n-1)e^(-x) dx`

The resultant integral can be taken by parts again in a similar way, resulting in the following:

`int x^(n-1)e^(-x) dx = -x^(n-1)e^(-x) + (n-1)int x^(n-2)e^(-x) dx`

For a given value of n, this process can be repeated times until the power of x in the integral is 0. Then, the final integral can be taken as follows:

`int e^(-x) dx = -e^(-x)`

Approved by eNotes Editorial
An illustration of the letter 'A' in a speech bubbles

We need to find `intx^n e^(-x)dx`.

Let's solve the problem for `n=1`.

`int xe^(-x)dx=|(u=x, dv=e^(-x)),(du=dx, v=-e^(-x))|=-xe^(-x)+e^(-x)=-e^(-x)(x+1)`` `

Let's now solve the problem for `n=2`.

`int x^2 e^(-x)dx=|(u=x^2, dv=e^(-x)),(du=2xdx, v=-e^(-x))|=-x^2e^(-x)+2int xe^(-x)dx=`


Similarly for `n=3` we would have

`int x^3e^(-x)dx=-e^(-x)(x^3+3x^2+6x+6)`

We can now see the pattern

`int x^n e^(-x)dx=-e^(-x) sum_(k=0)^n (x^n)^((k))`   <-- Solution

where `(x^n)^((k))` is the `k`th derivation of `x^n`. If we were to expand the above formula it would look like this

`int x^n e^(-x)dx=-e^(-x)(x^n+nx^(n-1)+n(n-1)x^(n-2)+cdots+n!x+n!)`

If you wish you can prove the formula formally by using mathematical induction.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial