Use the quotient Rule to differentiate the function f(x) = 8x/x^5+3

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to use quotient rule to differentiate the function with respect to x, hence, you need to assign two functions to numerator and denominator, such that: `g(x) = 8x, h(x) = x^5 + 3` .

You need to remember the quotient rule, such that:

`f'(x) = (g'(x)h(x) - g(x)h'(x))/(h^2(x))`

Replacing 8 for g'(x) and `5x^4` for h'(x) yields:

`f'(x) = (8(x^5 + 3) - 8x(5x^4))/((x^5 + 3)^2)`

`f'(x) = (8x^5 + 24 - 40x^5)/((x^5 + 3)^2)`

`f'(x) = (24 - 32x^5)/((x^5 + 3)^2)`

`f'(x) = 8(3 - 4x^5)/((x^5 + 3)^2)`

Hence, evaluating the derivative of the given function, by quotient rule, yields `f'(x) = 8(3 - 4x^5)/((x^5 + 3)^2).`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial