Use the disk method to verify that the volume of a right circular cone is `1/3 *pir^2h` where `r` is the radius of the base and `h` is the height.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To verify the volume of a right circular cone, we consider the radius of the base (r) as an interval along the x-axis  and height (h) as an interval along the y-axis. As shown in the attached image, a red line revolves about the y-axis to form a right circular cone. For the equation of the red line, we consider the points: `(0,h) ` and `(r,0)` where:  `x_1= 0` , `y_1=h` , `x_2=r` , and `y_2=0` .

The point `(0,h)` is a y-intercept point therefore  it follows  `(0,b)` then ` b =h` in `y=mx+b` .

To solve for m, we follow `m = ((y_2-y_1))/((x_2-x_1))` .

`m= ((0-h))/((r-0)) = -h/r`

Then  plug-in m= -h/r and b = h, we get the equation of the red line as: `y =-h/rx+h` .

This can be rearrange into `x = -(y-h)*r/h`   or  ` x= ((h-y)r)/h` .

Using the Disk Method, we consider a rectangular strip perpendicular to the axis of revolution.

For a horizontal rectangular strip with a thickness of "dy", we follow the formula for Disk Method as: `V = int_a^b pi r^2 dy` .

 To determine the r, we consider the length of the rectangular strip `= x_2-x_1` .

Then, `r= ((h-y)r)/h - 0 = ((h-y)r)/h `  .

Boundary values of y: `a=0` to `b=h` .

Plug-in the values on  the formula: `V = int_a^b pi r^2 dy` , we get:

`V = int_0^h pi (((h-y)r)/h)^2 dy`

`V = int_0^h pi (r^2/h^2)*(h-y)^2dy`

Apply basic integration property: `int c*f(y) dy = c int f(y) dy` .

`V =( pir^2)/h^2 int_0^h (h-y)^2 dy`

To find the indefinite integral, we may apply u-substitution by letting` u = h-y` then `du = -dy` or `(-1)du = dy` .

`V =( pir^2)/h^2 int (u)^2 *(-1)du`

`V =( -pir^2)/h^2 int (u)^2 du`

Apply Power rule for integration:` int y^n dy= y^(n+1)/(n+1) ` .

`V =( -pir^2)/h^2* u^(2+1)/(2+1)`

`V =( (-pir^2)/h^2)* u^3/3`

Plug-in `y = h-y`  on `(( pir^2)/h^2)* u^3/3` , we get:

`V =(( -pir^2)/h^2)* (h-y)^3/3|_0^h`

Apply definite integration formula: `int_a^b f(y) dy= F(b)-F(a)` .

`V =((- pir^2)/h^2)* (h-h)^3/3-((- pir^2)/h^2)* (h-0)^3/3`

`V =(( -pir^2)/h^2)* (0)^3/3-(( -pir^2)/h^2)* (h)^3/3`

`V =0 -(( -pih^3r^2)/(3h^2))`

`V = 0 +(pih^3r^2)/(3h^2)`

`V =(pih^3r^2)/(3h^2)`

`V = (pihr^2)/3` or `1/3pir^2h`

Note: Recall the Law of Exponent: `y^n/y^m= y^((n-m))`

then `h^3/h^2= h^((3-2)) = h^` 1 or `h` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Image (1 of 1)
Approved by eNotes Editorial