You should create a partition of the interval [0,1] in n subintervals that have the following lengths such that:

`Delta x_i = (1-0)/n = 1/n`

`x_i = i*(1/n)`

You need to use limit definitionto evaluate the definite integral such that:

`int_0^1 x^3 dx = lim_(n->oo) sum_(i=1)^n f(x_i)*Delta x_i`

`int_0^1 x^3 dx = lim_(n->oo) sum_(i=1)^n (i^3/n^3)*(1/n` )

`int_0^1 x^3 dx = lim_(n->oo) 1/n^4sum_(i=1)^n i^3`

You should remember the formula that gives the summation `sum_(i=1)^n i^3` such that:

`sum_(i=1)^n i^3 = 1^3 + 2^3 + ... + n^3 = (n^2(n+1)^2)/4`

`int_0^1 x^3 dx = lim_(n->oo) (1/n^4)*(n^2(n+1)^2)/4`

`int_0^1 x^3 dx = (1/4)lim_(n->oo) (n^2/n^2)*((n+1)/n)*((n+1)/n)`

`int_0^1 x^3 dx = (1/4)lim_(n->oo) 1*(1 + 1/n)*(1 + 1/n) = 1/4`

**Hence, evaluating the area under the curve, using the limit definition of definite integral, yields `int_0^1 x^3 dx = 1/4.` **

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.