Is there a faster, effective way to remember trigonometric identities? Esp. the Product to Sum and Sum to Product identities?

I've heard about methods like derivation, but I don't know how to do that. Any tips, or advice would be extremely helpful. Thank You!

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Remember the rules of logarithms: the sum of the logarithms having the same base becomes the logarithm of the product of the numbers.

sin x + sin y = `2 sin (x+y)/2 *cos(x-y)/2`

sin x - sin y = `2 cos(x+y)/2 *sin(x-y)/2`

Use the notation `(x+y)/2 =alpha =gt x+y = 2 alpha`

`(x-y)/2 = beta =gt x-y = 2 beta`

Adding the equations yields: `2x = 2(alpha + beta) =gt x = alpha + beta`

Subtract x-y from x+y => `2y = 2(alpha + beta) =gt y = alpha - beta`

`sin (alpha + beta) + sin (alpha- beta) = sin alpha*cos beta + sin beta*cos alpha + sin alpha*cos beta - sin beta*cos alpha`

Reducing the opposite terms yields:

`sin (alpha + beta) + sin (alpha- beta) = 2 sin alpha*cos beta`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial