`sum_(n=3)^oo 1/(nlnn[ln(lnn)]^p)` Find the positive values of p for which the series converges.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To find the positive values of p in which the series `sum_(n=3)^oo 1/(nln(n)(ln(ln(n)))^p)` , we may apply the integral test.

Integral test is applicable if f is positive, continuous, and decreasing function and `a_n=f(x)` . The infinite series `sum_(n=k)^oo a_n` converges if and only of the improper integral `int _k^oo f(x)dx ` converges to a finite number. If the integral diverges then the series also diverges.

For the infinite series `sum_(n=3)^oo 1/(nln(n)(ln(ln(x)))^p)` , we have:

`a_n=1/(nln(n)(ln(ln(n)))^p)`

Then, `f(x) =1/(xln(x)(ln(ln(x)))^p)`

The `f(x)` satisfies the conditions for integral test for the interval `[3,oo)`

We set-up the improper integral as:

`int_3^oo1/(xln(x)(ln(ln(x)))^p) dx.`

Apply u-substitution by letting `u = ln(x)` then `du =1/xdx` .

`int 1/(xln(x)(ln(ln(x)))^p) dx=int 1/(ln(x)(ln(ln(x)))^p)* 1/xdx`

                      `=int 1/(u(ln(u))^p) du`

Apply another set of substitution: let` v =ln(u)` and `dv = 1/u du` .

`int 1/(u(ln(u))^p) du=int 1/(ln(u))^p* 1/u du`

                       `=int 1/v^p* dv`

                       ` =int v^(-p) dv`

                        `= v^(-p+1)/(-p+1)`

Recall `u =ln(x) ` and `v = ln(u)`  then `v =ln(ln(x))` .

`v^(-p+1)/(-p+1)=(ln(ln(x)))^(-p+1)/(-p+1)|3^oo`

The integral is finite when `-p+1lt0` or `pgt1` .

Note: When` (ln(ln(x)))` has positive power on the numerator side then the integral diverges. 

 When` (ln(ln(x)))` has negative power on the numerator side then the integral converges. 

Thus, the series `sum_(n=3)^oo 1/(nln(n)(ln(ln(n)))^p)` converges when `pgt1` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial