`sum_(n=2)^oo n/(ln (n))`

To determine if the series is convergent or divergent, apply the nth-Term Test for Divergence.

It states that if the limit of `a_n` is not zero, or does not exist, then the sum diverges.

`lim_(n->oo) a_n!=0` or `lim_(n->oo) a_n =DNE`

`:.` `sum` `a_n` diverges

Applying this, the limit of the term of the series as n approaches infinity is:

`lim_(n->oo) a_n`

`=lim_(n->oo) n/ln(n)`

To take the limit of this, use Lâ€™Hospitalâ€™s Rule.

`=lim_(n->oo) (1)/(1/n)`

`=lim_(n->oo) n`

`=oo`

**Therefore, by the nth-Term Test for Divergence, the series
diverges.**

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.