`sum_(n=1)^oo 1/n^(1/2)` Use the Integral Test to determine the convergence or divergence of the p-series.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The Integral test is applicable if f is positive and decreasing function on the infinite interval `[k, oo)` where` kgt= 1` and `a_n=f(x)` . Then the series `sum_(n=1)^oo a_n` converges if and only if the improper integral `int_1^oo f(x) dx` converges. If the integral diverges then the series also diverges.

For the given series `sum_(n=1)^oo 1/n^(1/2)` , then `a_n = 1/n^(1/2)` then applying `a_n=f(x)` , we consider:

`f(x) = 1/x^(1/2)` .  

As shown on the graph of `f(x)` , the function is positive on the interval `[1,oo)` . As x at the denominator side gets larger, the function value decreases.

Therefore, we may determine the convergence of the improper integral as:

`int_1^oo 1/x^(1/2) = lim_(t-gtoo)int_1^t 1/x^(1/2) dx`

Apply Law of exponent: `1/x^m = x^(-m)` .

`lim_(t-gtoo)int_1^t 1/x^(1/2) dx =lim_(t-gtoo)int_1^t x^(-1/2) dx`

Apply Power rule for integration:` int x^n dx = x^(n+1)/(n+1)` .

`lim_(t-gtoo)int_1^t x^(-1/2) dx=lim_(t-gtoo)[ x^(-1/2+1)/(-1/2+1)]|_1^t`

                               `=lim_(t-gtoo)[ x^(1/2)/(1/2)]|_1^t`

                                `=lim_(t-gtoo)[ x^(1/2)*(2/1)]|_1^t`

                                `=lim_(t-gtoo)[ 2x^(1/2)]|_1^t`

                             or  `lim_(t-gtoo)[ 2sqrt(x)]|_1^t`

Apply definite integral formula: `F(x)|_a^b = F(b)-F(a)` .

`lim_(t-gtoo)[ 2sqrt(x)]|_1^t=lim_(t-gtoo)[2sqrt(t) -2sqrt(1)]`

                            `=lim_(t-gtoo)[2sqrt(t) -2*1]`

                           `=lim_(t-gtoo)[2sqrt(t) -2]`

                          `= oo`

Note: `lim_(t-gtoo)( -2) =-2` and `lim_(t-gtoo)2sqrt(t) = oo ` then `oo-2~~oo` .

The` lim_(t-gtoo)[ 2sqrt(x)]|_1^t = oo` implies that the integral diverges.

Conclusion: The integral`int_1^oo 1/x^(1/2) ` diverges, therefore the series `sum_(n=1)^oo 1/n^(1/2) ` must also diverge.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial