`sum_(n=0)^oo (-1)^n/(n!)` Determine the convergence or divergence of the series.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We may apply the Ratio Test to determine the convergence or divergence of the series `sum_(n=0)^oo (-1)^n/(n!)` .

 In Ratio test, we determine the limit as:

 `lim_(n-gtoo)|a_(n+1)/a_n| = L`

  Then, we follow the conditions:

 a) `L lt1` then the series is absolutely convergent

 b) `Lgt1` then the series is divergent.

 c) `L=1` or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.

For the series `sum_(n=0)^oo (-1)^n/(n!)` , we have `a_n=(-1)^n/(n!)` .

Then, we may let `a_(n+1) =(-1)^(n+1)/((n+1)!)`

 We set up the limit as:

`lim_(n-gtoo) |((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|`

  To simplify the function, we flip the bottom and proceed to multiplication:

`|((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|=|(-1)^(n+1)/((n+1)!) * (n!)/(-1)^n|`

Apply Law of Exponent: `x^(n+m) = x^n*x^m` and `(n+1)! = n!(n+1)`

`|((-1)^n(-1)^1)/(n!(n+1)) * (n!)/(-1)^n|`

Cancel out the common factors `(-1)^n` and `n!` .

`|(-1)^1/(n+1)|`

`=|-1/(n+1)|`

`=1/(n+1)`

Applying `|((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|=1/(n+1)` , we get:

`lim_(n-gtoo) |((-1)^(n+1)/((n+1)!)) /((-1)^n/(n!))|`

`=lim_(n-gtoo)1/(n+1)`

`=(lim_(n-gtoo)1)/(lim_(n-gtoo)(n+1))`

`= 1 /oo`

`= 0`

 The limit value  `L=0` satisfies the condition: `L lt1` .

 Therefore, the series `sum_(n=0)^oo (-1)^n/(n!)` is absolutely convergent.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial