Solve the system of equtions and check your answer.

2x - y + 1 = 0

x + 2y - 6 = 0

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The system of equations

2x - y + 1 = 0 ...(1)

x + 2y - 6 = 0 ...(2)

has to be solved.

(1) - 2*(2)

=> 2x - 2x - y - 4y + 1 + 12 = 0

=> -5y = -13

=> y = 13/5

x = 6 - 2y = 6 - 26/5 = 4/5

To check the solution, substitute x and y in the equations and check the result.

2x - y + 1 = 2*(4/5) - (13/5) + 1 = 0

x + 2y - 6 = 4/5 + 26/5 - 6 = 0

The solution of the given system of equations is x = 4/5 and y = 13/5

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial