solve sin2y=cos4y for y, where 0<y<360. hint: cos 4y=cos(2y+2y) 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to move all terms to one side and then you should add and subtract the constant terms 1 such that:

`sin 2y - cos 4y + 1 - 1 = 0`

You need to remember the formula of half of angle such that `1 - cos 4y = 2 sin^2 2y` :

`sin 2y + 2sin^2 2y - 1 = 0`

You should come up with the substitution such that:

`sin 2y = x`

`2x^2 + x - 1 = 0`

You ned to use quadratic formula such that:

`x_(1,2) = (-1 +- sqrt(1 + 8))/4`

`x_1 = (-1+3)/4 =gt x_1 = 1/2`

`x_2 = (-1-3)/4 =gt x_2 = -1`

You need to solve for y, in interval`(0^o,360^o),`  the equations `sin 2y = 1/2 ` and sin `2y = -1 ` such that:

`sin 2y = 1/2`

You need to remember that the values of the sine function are positive in quadrants 1 and 2 such that:

`sin 2y = 1/2 =gt 2y = sin^(-1)(1/2) =gt 2y =30^o =gt y = 15^o`

and `2y = 180^o - 30^o =gt 2y = 15o^o =gt y = 75^o`

`sin 2y = -1 =gt 2y = 270^o =gt y = 135^o`

Hence, evaluating the solutions to given equation over interval `(0^o,360^o)`  yields `y = 15^o`, `y = 75^o` and `y = 135^o` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial