Student Question

Show that the sequence {10^n/n!} converges and find its limit.

Not familiar with finding the limit when a factorial is involved. 

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To show that the sequence converge, we need to show that the limit of the nth term when n tends to infinity is a constant. 

Usually we can not find limits of factorials, so we need to rewrite our problem a little differently.

`(10^n)/(n!)=(10^10)/(10!)xx(10/11)xx(10/12)xx(10/13)xx...(10/n)` From that we can conclude:

`0<(10^n)/(n!)<(10^10/10!)*(10/11)^(n-10)`

If we can show that the left hand side and right hand side of the above inequality have the same limit, then the middle expression will have the same limit.

Note that `lim_(n->oo)0=0`

and since 10/11 is less than one we have `lim_(n->oo)(10^10/(10!))xx(10/11)^(n-10)=(10^10)/(10!)xx0=0`

Since the previous two limits equal the same number, then 

`lim_(n->oo)(10^n)/(10!)=0`

Hence your sequence converge.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial