Prove that the sum of the first n integers starting with 1 is equal to n*(n+1)/2

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The sum of the first n integers starting with 1 is equal to `S_n = (n*(n+1))/2` . This can be proved by induction.

First, verify the formula for n = 1. `S_1 = 1` and `(1*2)/2` is also equal to 1.

Now prove that the relation is true for n + 1 if it is assumed to be true for n.

`S_(n+1) = S_n + n+1`

It has been assumed that `S_n = (n*(n+1))/2`

`S_(n+1) = S_n + n+1 `

=> `(n*(n+1))/2 + n + 1`

=> `(n*(n+1))/2 + (2*(n + 1))/2`

=> `(n+1)/2*(n+2)`

=> `((n+1)(n+2))/2`

As the formula holds for n = 1 and if it is assumed to be true for any number n it is also true for n + 1, the formula holds for all integral values of n.

The sum of the first n integers is given by the formula `S_n = (n*(n+1))/2`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial