`(csctheta-sintheta)(sectheta-costheta)=1/(tantheta+cottheta)`
To prove, let's simplify the left side and right side of the equation separately.
> For left side of the equation:
`(csctheta-sintheta)(sectheta-costheta)`
Note that `csctheta=1/(sin theta)` and `sectheta=1/(costheta)` .
`=(1/(sintheta)-sintheta)(1/(costheta)-costheta)= ((1-sin^2theta)/(sintheta))((1-cos^2theta)/(costheta))`
Then, apply the Pythagorean identity `sin^2 theta + cos^2 theta =1` .
`= ((cos^2 theta)/(sintheta))((sin^2theta)/(costheta)) = sinthetacostheta`
So, the simplified form of left side of the equation is `sinthetacostheta` .
> For the right side of the equation:
`1/(tan theta + cottheta)`
Note that `cot theta = 1/(tantheta)` .
`=1/(tantheta+1/(tan theta)) = 1/[(tan^2theta+1)/(tantheta)] = tan theta/(tan^2theta+1)`
Apply the Pythagorean identity `tan^2theta+1=sec^2theta` .
`= (tantheta)/(sec^2theta)`
Note that `tan theta =(sin theta)/(cos theta)` . Also, `sec theta = 1/(costheta)` .
`= [(sin theta)/(costheta)]/(1/(cos^2theta)) = (sintheta)/(cos theta)*(cos^2theta)/1`
`= sinthetacostheta`
The simplified form of right side of the equation is `sinthetacostheta` .
------------------------------------------------------------------------------
The simplified form of both sides of the equation is the same which proves the identity `(csctheta-sintheta)(sectheta-costheta)=1/(tantheta+cottheta)` .
See eNotes Ad-Free
Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.
Already a member? Log in here.