Student Question

prove that  `(csc theta-sin theta)(sec theta-cos theta)=1/(tan theta+cot theta)`

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`(csctheta-sintheta)(sectheta-costheta)=1/(tantheta+cottheta)`

To prove, let's simplify the left side and right side of the equation separately.

> For left side of the equation:

`(csctheta-sintheta)(sectheta-costheta)`

Note that `csctheta=1/(sin theta)`  and  `sectheta=1/(costheta)` .

`=(1/(sintheta)-sintheta)(1/(costheta)-costheta)= ((1-sin^2theta)/(sintheta))((1-cos^2theta)/(costheta))`

Then, apply the Pythagorean identity `sin^2 theta + cos^2 theta =1` .

`= ((cos^2 theta)/(sintheta))((sin^2theta)/(costheta)) = sinthetacostheta`

So, the simplified form of left side of the equation is `sinthetacostheta` .

> For the right side of the equation:

`1/(tan theta + cottheta)`

Note that `cot theta = 1/(tantheta)` .

`=1/(tantheta+1/(tan theta)) = 1/[(tan^2theta+1)/(tantheta)] = tan theta/(tan^2theta+1)`

Apply the Pythagorean identity `tan^2theta+1=sec^2theta` .

`= (tantheta)/(sec^2theta)`

Note that `tan theta =(sin theta)/(cos theta)` .  Also, `sec theta = 1/(costheta)` .

`= [(sin theta)/(costheta)]/(1/(cos^2theta)) = (sintheta)/(cos theta)*(cos^2theta)/1`

`= sinthetacostheta`

The simplified form of right side of the equation is `sinthetacostheta` .

------------------------------------------------------------------------------

The simplified form of both sides of the equation is the same which proves the identity `(csctheta-sintheta)(sectheta-costheta)=1/(tantheta+cottheta)` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial