Prove `(sinx+sin(x/2))/(1+cosx+cos(x/2))=tg(x/2)` .

Expert Answers

An illustration of the letter 'A' in a speech bubbles

We will need the following 3 formulas:

`sin2x=2sinxcosx` if we put `x/2`  ` ` instead of `x` we get

`sinx=2sin (x/2) cos (x/2)`                                        (1)      

`cos2x=cos^2x-sin^2x`  if we put `x/2` instead of `x` we get

`cos x=cos^2(x/2)-sin^2(x/2)`                                    (2)

`sin^2x+cos^2x=1`  if we put `x/2` instead of `x` we get

`sin^2(x/2)+cos^2(x/2)=1`                                          (3)

Now let's start from the left side and thry to get the right hand side.

`(sinx+sin(x/2))/(1+cosx+cos^2(x/2))=`

Now we use formula (1) for numerator and formula (2) for denominator.

`(2sin(x/2)cos(x/2)+sin(x/2))/(1+cos^2(x/2)-sin^2(x/2)+cos(x/2))=`

Now we use formula (3) for `1` in denominator.

`(sin(x/2)(2cos(x/2)+1))/(sin^2(x/2)+cos^2(x/2)+cos^2(x/2)-sin^2(x/2)+cos(x/2))=`

`(sin(x/2)(2cos(x/2)+1))/(2cos^2(x/2)+cos(x/2))=(sin(x/2)(2cos(x/2)+1))/(cos(x/2)(2cos(x/2)+1))=(sin(x/2))/(cos(x/2))=`

and since `tan x=(sinx)/(cosx)` we get

`tan(x/2)`

which proves your identity.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial