Please help??

Images:
Image (1 of 1)

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to evaluate the length of curve `y = ln((e^x - 2)/(e^x + 2))` , over the interval `[1,2]` , using the following formula, such that:

`L = int_1^2 sqrt(1 + ((dy)/(dx))^2)`

You need to differentiate the function `y = ln((e^x - 2)/(e^x + 2))` , with respect to x, using the chain rule, such that`:(e^x - 2)/(e^x + 2)`

`(dy)/(dx) = 1/((e^x - 2)/(e^x + 2))*((e^x - 2)/(e^x + 2))'`

`(dy)/(dx) = 1/((e^x - 2)/(e^x + 2))*(e^x(e^x + 2) - e^x(e^x - 2))/((e^x + 2)^2)`

`(dy)/(dx) = (e^x + 2)/(e^x - 2)*(e^x(e^x + 2 - e^x + 2))/((e^x + 2)^2)`

`(dy)/(dx) = (e^x + 2)/(e^x - 2)*(4e^x)/((e^x + 2)^2)`

`(dy)/(dx) = (4e^x)/((e^x + 2)(e^x - 2))`

`(dy)/(dx) = (4e^x)/(e^(2x) - 4)`

Raising to square yields:

`((dy)/(dx))^2 = (16e^(2x))/((e^(2x) - 4)^2)`

Adding 1 both sides yields:

`1 + ((dy)/(dx))^2 = 1 + (16e^(2x))/((e^(2x) - 4)^2)`

`1 + ((dy)/(dx))^2 = ((e^(2x) - 4)^2 + 16e^(2x))/((e^(2x) - 4)^2)`

`1 + ((dy)/(dx))^2 = (e^(4x) - 8e^(2x) + 16 + 16e^(2x))/((e^(2x) - 4)^2)`

`1 + ((dy)/(dx))^2 = (e^(4x) + 8e^(2x) + 16)/((e^(2x) - 4)^2)`

`1 + ((dy)/(dx))^2 = ((e^(2x) + 4)^2)/((e^(2x) - 4)^2)`

Taking square root both sides, yields:

`sqrt(1 + ((dy)/(dx))^2) = sqrt(((e^(2x) + 4)^2)/((e^(2x) - 4)^2))`

`sqrt(1 + ((dy)/(dx))^2) = ((e^(2x) + 4)/|(e^(2x) - 4|`

`sqrt(1 + ((dy)/(dx))^2) = ((e^(2x) + 4)/(4 - e^(2x))` if `x in [1,2]`

You need to evaluate the length of the given curve, such that:

`L = int_1^2 sqrt(1 + ((dy)/(dx))^2) dx `

`L = int_1^2 ((e^(2x) + 4)/(4 - e^(2x)) dx`

You should use integration by substitution, such that:

`4 - e^(2x) = t => -2e^(2x)dx = dt => dx = (dt)/(2(t - 4))`

`int ((e^(2x) + 4)/(4 - e^(2x))) dx = int (4 - t + 4)/(2t(t - 4)) dt`

`int (4 - t + 4)/(2t(t - 4)) dt = (1/2)int (8 - t)/(t(t - 4)) dt`

You need to use partial fraction decomposition, such that:

`(8 - t)/(t(t - 4)) = a/t + b/(t - 4)`

`8 - t = a(t - 4) + bt`

`8 - t = at - 4a + bt => -t + 8 = t(a + b) - 4a`

Equating the coefficients of like powers yields:

`{(a + b = -1),(-4a = 8):} => {(a + b = -1),(a = -2):} => {(-2 + b = -1),(a = -2):} => {(b = 1),(a = -2):}`

`(8 - t)/(t(t - 4)) = -2/t + 1/(t - 4)`

Integrating both sides yields:

`int (8 - t)/(t(t - 4)) dt = int -2/t dt + int 1/(t - 4) dt`

`int (8 - t)/(t(t - 4)) dt = -2 ln|t| + ln|t - 4|`

`(1/2)int (8 - t)/(t(t - 4)) dt = -ln|t| + (1/2)ln|t - 4|`

Replacing back `4 - e^(2x)` for t yields:

`int ((e^(2x) + 4)/(4 - e^(2x)) dx = -ln|4 - e^(2x)| + (1/2)ln|4 - e^(2x) - 4|`

`int ((e^(2x) + 4)/(4 - e^(2x)) dx = -ln|4 - e^(2x)| + (1/2)ln (e^(2x))`

`int ((e^(2x) + 4)/(4 - e^(2x)) dx = x - ln|4 - e^(2x)|`

Taking the definite integral, yields:

`int_1^2 ((e^(2x) + 4)/(4 - e^(2x)) dx = (x - ln|4 - e^(2x)|)|_1^2`

Using the fundamental theorem of calculus, yields:

`int_1^2 ((e^(2x) + 4)/(4 - e^(2x))) dx = 2 - ln(e^4 - 4) - 1 + ln(e^2 - 4)`

`int_1^2 ((e^(2x) + 4)/(4 - e^(2x))) dx = 1 + ln ((e^2 - 4)/(e^4 - 4))`

Hence, evaluating the length of the given curve, yields `int_1^2 ((e^(2x) + 4)/(4 - e^(2x))) dx = 1 + ln ((e^2 - 4)/(e^4 - 4)).`

(e^x - 2)/(e^x + 2)

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial