A box with a square base and an open top must have a volume of 32,000 cm3. Find the dimensions of the box that minimize the amount of material used.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Let the width of the square base be x and height of the box be y, then

Volume, V is given by,

`V = x^2y`

The area (or amount of material), A is given by,

`A = x^2+4(xy)`

Now we have to find values for x and y, such that it A has a minimum with volume of 32000`cm^3`

`32000 = x^2y`

`y = 32000/x^2`

If we substitute this in A,

`A = x^2+4x(32000/x^2)`

`A = x^2+128000/x`

Let's find the derivative of A wrt x,

`(dA)/(dx) = 2x - 128000/x^2`

For extreme points (Maximums or minimums or inflection points), first derivative must be zero.

Therefore,

`0 = 2x -128000/x^2`

`x = 64000/x^2`

`x^3 = 64000`

`x^3 -40^3 = 0`

`(x-40)(x^2+40x+40^2) = 0`

Therefore, `x = 40` .

To check whether this is a minimum, you have to find the second derivative.

`(d^2A)/(dx^2) = 2 -(-2*128000/x^3)`

`(d^2A)/(dx^2) = 2 +256000/x^3`

at x = 40,

`(d^2A)/(dx^2) = 2 +256000/40^3`    `gt 0`

Therefore, A has a minimum at x =40.

Therefore y is,

`y = 32000/x^2`

`y = 32000/40^2 = 32000/1600 = 20`

The dimensions of the box so that the amount of material used is minimum are width = 40 cm and height = 20 cm.

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial