`a_n=nsin(1/n)`

Apply n'th term test for divergence, which states that,

If `lim_(n->oo) a_n!=0` , then `sum_(n=1)^ooa_n` diverges

`lim_(n->oo)nsin(1/n)=lim_(n->oo)sin(1/n)/(1/n)`

Apply L'Hospital's rule,

Test L'Hospital condition:`0/0`

`=lim_(n->oo)(d/(dn)sin(1/n))/(d/(dn)1/n)`

`=lim_(n->oo)(cos(1/n)(-n^(-2)))/(-n^(-2))`

`=lim_(n->oo)cos(1/n)`

`lim_(n->oo)1/n=0`

`lim_(u->0)cos(u)=1`

By the limit chain rule,

``

`=1!=0`

So, by the divergence test criteria series diverges.

` `

## See eNotes Ad-Free

Start your **48-hour free trial** to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Already a member? Log in here.