`lim_(x->oo)x^2/sqrt(x^2+1)` Evaluate the limit, using L’Hôpital’s Rule if necessary.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

 

Given

`lim_(x->oo)x^2/sqrt(x^2+1)`

as `x->oo` then we get `x^2/sqrt(x^2+1)=oo/oo`

since  it is of the form  `oo/oo` , we can use the L 'Hopital rule

so upon applying the L 'Hopital rule we get the solution as follows,

 For the given  general equation L 'Hopital rule is as follows

`lim_(x->a) f(x)/g(x) is = 0/0` or `(+-oo)/(+-oo)` then by using the L'Hopital Rule we get  the solution with the  below form.

`lim_(x->a) (f'(x))/(g'(x))`

 

so , now evaluating

`lim_(x->oo)x^2/sqrt(x^2+1)`

=`lim_(x->oo)((x^2)')/((sqrt(x^2+1))')`

First let us solve `(sqrt(x^2+1))' `

=> `d/dx (sqrt(x^2+1)) `

let `u=x^2+1 `

so,

`d/dx (sqrt(x^2+1)) `

=`d/dx (sqrt(u))`

= `d/(du) sqrt(u) * d/dx (u) `        [as `d/dx f(u) = d/(du) f(u) (du)/dx` ]

=  `[(1/2)u^((1/2)-1) ]*(d/dx (x^2+1))`

=  `[(1/2)u^(-1/2)]*(2x)`

=`[1/(2sqrt(x^2 +1))]*(2x)`

=`x/sqrt(x^2+1)`

so now the below limit can be given as

=`lim_(x->oo)((x^2)')/((sqrt(x^2+1))')`

=`lim_(x->oo)((2x))/(x/sqrt(x^2+1))`

=`lim_(x->oo) (2sqrt(x^2+1))`

Now on substituting  the value of `x =oo` we get

=` (2sqrt((oo)^2+1))`

= `oo`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial