`lim_(x->0+)(1+5/x)^x`

0+ is the right hand limit

Please give your answer to 4 decimal place.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

The function is continuous at 0 so the left hand limit is just the same as the right hand limit, and the limit exists at 0.

`lim_(x -> 0) (1+5/x)^x`

This is an indeterminate for of type `infty^0` . To resolve this, we perform the following transformation:

`lim_(x->0)(1+5/x)^x = e^(lim_(x->0)log(1+5/x)^x) = e^(lim_(x->0)xlog(1+5/x))` , using also the property of logarithms. 

The resulting expression is still an indeterminate, this time, of type `0*infty` . We perform a substitution. Let `a = 1/x` . We now have:

`e^(lim_(x->0)xlog(1+5/x)) = e^(lim_(a -> +infty) (log(1+5a))/(a))`

This is still an indeterminate form, `infty/infty` but is easier to resolve. We simply have to use L'Hospital's Rule:

`lim_(a->+infty) (log(1+5a))/a = lim_(a->+infty) ((d(log(1+5a)))/(da))/((d(a))/(da))`

`lim_(a->+infty) (5/(1+5a))`

Note that the limit of a quotient is just the quotient of the limits, and the limit of the constant is same as the constant. Also, remember to bring back the whole expression (base e):

`e^(5/(lim_(a->+infty)(1+5a)))` 

`lim_(a->+infty)(1+5a)` is infinity, so the entire exponent approaches 0. Therefore:

`lim_(x->0)(1+5/x)^x = e^0 = 1`

[Note that log here is the natural logarithm, ln]

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial