lim t>infinity (t^3-5t)^2/3t^5+2t-4

show all working

Expert Answers

An illustration of the letter 'A' in a speech bubbles

You need to substitute oo for t in limit such that:

`lim_(t->oo) ((t^3-5t)^2)/(3t^5+2t-4) = oo/oo`

Since the indetermination is of type `oo/oo` , you may use l'Hospital's theorem such that:

`lim_(t->oo) ((t^3-5t)^2)/(3t^5+2t-4) = lim_(t->oo) (((t^3-5t)^2)')/((3t^5+2t-4)')`

`lim_(t->oo) ((t^3-5t)^2)/(3t^5+2t-4) = lim_(t->oo) (2(t^3-5t)(3t^2 - 5))/(15t^4 + 2)`

`lim_(t->oo) (2(t^3-5t)(3t^2 - 5))/(15t^4 + 2) = lim_(t->oo) (2(3t^5 - 20t^3 + 25t))/(15t^4 + 2)`

`lim_(t->oo) (2(3t^5 - 20t^3 + 25t))/(15t^4 + 2) = oo/oo`

You need to use again l'Hospital's theorem such that:

`lim_(t->oo) (2(15t^4 - 60t^2 + 25))/(60t^3) = oo/oo`

`lim_(t->oo) ((2(15t^4 - 60t^2 + 25))')/((60t^3)') = lim_(t->oo) (2(60t^3 - 120t))/(180t^2) = oo/oo`

`lim_(t->oo) (2(60t^3 - 120t))/(180t^2) = lim_(t->oo) ((2(60t^3 - 120t))')/((180t^2)')`

`lim_(t->oo) ((2(60t^3 - 120t))')/((180t^2)') = lim_(t->oo) (2(180t^2 - 120))/(360t) = oo/oo`

`lim_(t->oo) (2(180t^2 - 120))/(360t) = lim_(t->oo) ((2(180t^2 - 120))')/((360t)')`

`lim_(t->oo) (2(180t^2 - 120))/(360t) = lim_(t->oo) (2*360t)/360 = oo/360 = oo`

Hence, evaluating the given limit using l'Hospital's theorem yields `lim_(t->oo) ((t^3-5t)^2)/(3t^5+2t-4) = oo` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial