`int x/(x^2-6x+10)^2 dx` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`intx/(x^2-6x+10)^2dx`

Let's rewrite the integrand as,

`=1/2int(2x)/(x^2-6x+10)^2dx`

`=1/2int(2x-6+6)/(x^2-6x+10)^2dx`

`=1/2[int(2x-6)/(x^2-6x+10)^2dx+int6/(x^2-6x+10)^2dx]`  --------------------(1)

Now let' evaluate each of the above two integrals separately,

`int(2x-6)/(x^2-6x+10)^2dx`

Let's apply integral substitution:`u=x^2-6x+10`

`=>du=(2x-6)dx`

`=int1/u^2du`

`=intu^(-2)du`

Now from the integer tables:`intu^ndu=u^(n+1)/(n+1)+C`

`=u^(-2+1)/(-2+1)`

`=-1/u`

Substitute back `u=x^2-6x+10`

`=-1/(x^2-6x+10)`                    -----------------------------(2)

Now let's evaluate the second integral,

`int6/(x^2-6x+10)^2dx`

Take the constant out,

`=6int1/(x^2-6x+10)^2dx`

Complete the square of the term in the denominator.

`=6int1/((x-3)^2+1)^2dx`  

Let's apply integral substitution:`u=x-3`

`=>du=dx`

`=6int1/(u^2+1^2)^2du`

Now use the following from the integration tables:

`int1/(a^2+-u^2)^ndu=1/(2a^2(n-1))[u/(a^2+-u^2)^(n-1)+(2n-3)int1/(a^2+-u^2)^(n-1)du]`

`=6{1/(2(1)^2(2-1))[u/(1^2+u^2)^(2-1)+(2(2)-3)int1/(1^2+u^2)^(2-1)du]}`

`=6{1/2[u/(1+u^2)+int1/(1^2+u^2)du]}`

Now from the integration table:`int1/(a^2+u^2)du=1/aarctan(u/a)+C`

`=6{1/2[u/(1+u^2)+arctan(u/1)]}`

`=(3u)/(1+u^2)+3arctan(u)`

Substitute back `u=x-3`

`=(3(x-3))/(1+(x-3)^2)+3arctan(x-3)`

`=(3x-9)/(1+x^2-6x+9)+3arctan(x-3)`

`=(3x-9)/(x^2-6x+10)+3arctan(x-3)`    -------------------------(3)

Plug back the results of the integrals 2 and 3 in 1

`int1/(x^2-6x+10)^2dx=1/2[-1/(x^2-6x+10)+(3x-9)/(x^2-6x+10)+3arctan(x-3)]`

`=1/2[(3x-9-1)/(x^2-6x+10)+3arctan(x-3)]`

`=1/2[(3x-10)/(x^2-6x+10)+3arctan(x-3)]`

`=(3x-10)/(2(x^2-6x+10))+3/2arctan(x-3)`

Add a constant C to the solution,

`=(3x-10)/(2(x^2-6x+10))+3/2arctan(x-3)+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial