Student Question

`int x/sqrt(x^4-6x^2+5) dx` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Recall that indefinite integral follows `int f(x) dx = F(x) +C` where:

`f(x)` as the integrand function

`F(x)` as the antiderivative of `f(x)`

`C ` as the constant of integration

The given integral problem: `int x/(x^4-6x^2+5) dx` resembles one of the formulas from the integration table. We follow the integral formula for rational function with roots as:

`int (dx)/sqrt(ax^2+bx+c) = 1/sqrt(a)ln|2ax+b+2sqrt(a(ax^2+bx+c))| +C` .

For easier comparison, we apply u-substitution by letting: `u=x^2`

then `du= 2x dx` or `(du)/2 =xdx` .

Plug-in the values, we get:

`int x/(x^4-6x^2+5) dx =int 1/(x^4-6x^2+5)*x dx`

                                ` =int 1/(u^2-6u+5)*(du)/2`

Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .

`int 1/(u^2-6u+5)*(du)/2 = 1/2int 1/(u^2-6u+5) du`

By comparing `ax^2+bx+c`  with `u^2-6u+5` , we determine the corresponding values as: `a=1` , `b=-6` ,and `c=5` .

Applying the aforementioned formula for rational function with roots, we get:

`1/2int 1/(u^2-6u+5) du`

`=1/2 * [1/sqrt(1)ln|2(1)u+(-6)+2sqrt(1(1u^2+(-6)u+5))|] +C`

`=1/2 * [1/1ln|2u-6+2sqrt(u^2-6u+5)|] +C`

`=(ln|2u-6+2sqrt(u^2-6u+5)|)/2 +C`

Plug-in `u = x^2`  and `u^2=x^4 `  on   `(ln|2u-6+2sqrt(u^2-6u+5)|)/2 +C` , we get the indefinite integral as:

`int x/(x^4-6x^2+5) dx =(ln|2x^2-6+2sqrt(x^4-6x^2+5)|)/2 +C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial