`int (x^3+x+1)/(x^4+2x^2+1) dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integral are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand

          `F(x)` as the anti-derivative function of `f(x)`

          `C `  as the arbitrary constant known as constant of integration


To determine the indefinite integral of `int (x^3+x+1)/(x^4+2x^2+1) dx` , we apply partial fraction decomposition to expand the integrand: `f(x)=(x^3+x+1)/(x^4+2x^2+1)` .

The pattern on setting up partial fractions will depend on the factors  of the denominator. For the given problem,  the denominator is in a similar form of perfect squares trinomial:  `x^2+2xy+y^2= (x+y)^2`

Applying the special factoring on `(x^4+2x^2+1)` , we get: `(x^4+2x+1)= (x^2+1)^2` .

For the repeated quadratic factor `(x^2+1)^2` , we will have partial fraction: `(Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2` .

The integrand becomes:

`(x^3+x+1)/(x^4+2x^2+1)=(Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2`

Multiply both sides by the `LCD =(x^2+1)^2` :

`((x^3+x+1)/(x^4+2x^2+1)) *(x^2+1)^2=((Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2)*(x^2+1)^2`

`x^3+x+1=(Ax+B)(x^2+1) +Cx+D`

`x^3+x+1=Ax^3 +Ax+Bx^2+B+Cx+D`

`x^3+0x^2 + x+1=Ax^3 +Ax+Bx^2+B+Cx+D`

Equate the coefficients of similar terms on both sides to list a system of equations:

Terms with `x^3` :  `1 = A`

Terms with `x^2` :  `0=B`

Terms with `x` :  `1 = A+C`

Plug-in `A =1` on `1 =A+C` , we get: 

`1 =1+C`

`C =1-1`

`C =0`

Constant terms: `1=B+D`

Plug-in `B =0` on `1 =B+D` , we get: 

`1 =0+D`

`D =1`

Plug-in the values of `A =1` , `B=0` , `C=0` , and `D=1` , we get the partial fraction decomposition:

`(x^3+x+1)/(x^4+2x^2+1)=(1x+0)/(x^2+1) +(0x+1)/(x^2+1)^2`

                      `=x/(x^2+1) +1/(x^2+1)^2`

Then the integral becomes:

`int (x^3+x+1)/(x^4+2x^2+1) dx = int [x/(x^2+1) +1/(x^2+1)^2] dx`

Apply the basic integration property: `int (u+v) dx = int (u) dx +int (v) dx.`

`int [x/(x^2+1) +1/(x^2+1)^2] dx=int x/(x^2+1)dx +int 1/(x^2+1)^2 dx`

For the first integral, we apply integration formula for rational function as:

`int u /(u^2+a^2) du = 1/2ln|u^2+a^2|+C`

Then, `int x/(x^2+1)dx=1/2ln|x^2+1|+C or (ln|x^2+1|)/2+C`

For the second integral,  we apply integration by trigonometric substitution.

We let `x = tan(u) `  then  `dx= sec^2(u) du`

Plug-in  the values, we get:

`int 1/(x^2+1)^2 dx = int 1 /(tan^2(u)+1)^2 * sec^2(u) du`

Apply the trigonometric identity: `tan^2(u) +1 = sec^2(u)` and trigonometric property:` 1/(sec^2(u)) =cos^2(u)`

 `int 1 /(tan^2(u)+1)^2 * sec^(u) du =int 1 /(sec^2(u))^2 * sec^2(u) du`

                                        `= int 1 /(sec^4(u)) * sec^2(u) du`

                                       `=int 1/(sec^2(u)) du`

                                       `= int cos^2(u) du`

Apply the integration formula for cosine function: `int cos(x) dx = 1/2[x+sin(x)cos(x)]+C`

`int cos^2(u) du= 1/2[u+sin(u)cos(u)]+C`

Based from `x= tan(u)` then :

`u =arctan(x)`

`sin(u) = x/sqrt(x^2+1)`

`cos(u) =1/sqrt(x^2+1)`

Then the integral becomes:

`int 1/(x^2+1)^2dx`

`= 1/2[arctan(x) + (x/sqrt(x^2+1))*(1/sqrt(x^2+1))] `             


Combining the results, we get: 

`int (x^3+x+1)/(x^4+2x^2+1) dx =(ln|x^2+1|)/2+arctan(x)/2+x/(2x^2+2)+C` 

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial