`int x^2/sqrt(36-x^2) dx` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles


`int x^2/sqrt(36-x^2) dx`

This can be solved by using the Trigonometric substitutions  (Trig substitutions)

when the integral contains `sqrt(a-bx^2)` then we have to take

`x=sqrt(a/b) sin(t)` in order to solve the integral easily

so here , For

`int x^2/sqrt(36-x^2) dx`

`x` is given as

`x= sqrt(36/1) sin(t) = 6sin(t) `

=> `dx = 6 cos(t) dt`

so ,

`int x^2/sqrt(36-x^2) dx`

=`int (6sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`

= `int 36(sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`

=` int ((36)*(6)(sin(t))^2 *cos(t)) /sqrt(36-(6sin(t))^2) dt`

=`int (216(sin(t))^2 *cos(t)) /sqrt(36-36(sin(t))^2) dt`

= `int (216(sin(t))^2 *cos(t)) /sqrt(36(1-(sin(t))^2)) dt`

=`int (216(sin(t))^2 *cos(t)) /sqrt(36(cos(t))^2) dt`

=`int (216(sin(t))^2 *cos(t)) /(6(cos(t))) dt`

= `int (216/6) sin^2(t) dt`

= `int 36 sin^2(t) dt`

= `36 int sin^2(t) dt`

= `36 int (1-cos(2t))/2 dt`

= `(36/2) int (1-cos(2t)) dt`

= `18 [int 1 dt - int cos(2t) dt]+c`

= `18[t- (1/2)sin(2t)]+c`

but we know that

`x= 6sin(t)`

=> `x/6 = sin (t)`

=> `t= sin^(-1) (x/6) or arcsin(x/6)`


`18[t- (1/2)sin(2t)]+c`

= `18[(arcsin(x/6))- (1/2)sin(2(arcsin(x/6)))]+c`


`int x^2/sqrt(36-x^2) dx `

=`18arcsin(x/6)- 9sin(2(arcsin(x/6)))+c`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial