`int sqrt((5-x)/(5+x)) dx ` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integral follows the formula: `int f(x) dx = F(x)+C`

where:

`f(x)` as the integrand function

`F(x) ` as the antiderivative of `f(x)`

`C` as constant of integration.

 The given integral problem: `int sqrt ((5-x)/(5+x))dx`resembles one of the formulas from the integration table. It follows the integration formula for rational function with roots as:

`int sqrt(x/(a-x)) =-sqrt(x(a-x)) - a* arctan(sqrt(x(a-x))/(x-a))+C`

For easier comparison, we may apply u-substitution by letting: `u =5-x ` rearrange into `x = 5-u` .

The derivative of u will be `du = -1 dx` rearrange into `-du = dx` .

Plug -in the value on the integral problem, we get:

`int sqrt ((5-x)/(5+x)) dx =int sqrt (u/(5+(5-u)) )* (-du)`

                       ` =int -sqrt (u/(5+5-u)) du`

                       ` =int -sqrt (u/(10-u)) du`

Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .

`int -sqrt (u/(10-u)) du=(-1)int sqrt (u/(10-u)) du`

By comparing "`a-x` " with "`10-u` ", we determine the corresponding value: `a=10` .

Applying the aforementioned formula for rational function with roots, we get:

`(-1)int sqrt (u/(10-u)) du = (-1) *[-sqrt(u(10-u)) - 10* arctan(sqrt(u(10-u))/(u-10))]+C`

            ` =sqrt(u(10-u)) + 10* arctan(sqrt(u(10-u))/(u-10))+C`

Plug-in `u =5-x` on `sqrt(u(10-u)) + 10* arctan(sqrt(u(10-u))/(u-10))]+C` , we get the indefinite integral as:

`int sqrt ((5-x)/(5+x)) dx =sqrt((5-x)(10-(5-x))) + 10* arctan(sqrt((5-x)(10-(5-x)))/((5-x)-10))+C`

`=sqrt((5-x)(10-5+x)) + 10* arctan(sqrt((5-x)(10-5+x))/(5-x-10))+C`

`=sqrt((5-x)(5+x)) + 10 arctan(sqrt((5-x)(5+x))/(-x-5))+C`

`= sqrt(25-x^2) + 10 arctan(sqrt(25-x^2)/(-x-5))+C `                            

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial