`int sin(sqrt(x)) dx` Find the indefinite integral by using substitution followed by integration by parts.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

To evaluate the given integral problem `int sin(sqrt(x))dx` using u-substitution, we may let:`u = sqrt(x)` .

 Square both sides of  `u = sqrt(x)` , we get: `u^2 =x`

Take the derivative of `u^2 =x` , we get: `2udu =dx` .

Plug-in the values: `u =sqrt(x)` and `dx = 2u du` , we get:

 `int sin(sqrt(x))dx =int sin(u)* 2u du`

Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .

`int sin(u)* 2u du =2int sin(u)* u du`

Apply formula for integration by parts: `int f*g'=f*g - int g*f'` .

Let: `f =u`  then `f' =du`

       `g' =sin(u) du` then  `g= -cos(u)`

Note: From the table of integrals, we have `int sin(theta) d theta= -cos(theta) +C` .

Following the  formula for integration by parts, we set it up as:

`2int sin(u)* u du= 2 * [ u *(-cos(u)) - int (-cos(u)) du]`

                                 `= 2 * [ -u cos(u)) + int (cos(u)) du]`

                                 `= 2 * [ -u cos(u)) + sin(u)]+C`

                                 `= -2ucos(u) +2sin(u) +C`

Plug-in `u=sqrt(x)` on `-2ucos(u) +2sin(u) +C` , we get the complete indefinite integral as:

`int sin(sqrt(x))dx=-2sqrt(x)cos(sqrt(x)) +2sin(sqrt(x)) +C` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial