`int sin(sqrt(theta)) / sqrt(theta) d theta` Find or evaluate the integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

`int (sin sqrt theta)/sqrt theta d theta`

To solve, apply u-substitution method.

`u=sqrt theta`

`u= theta ^(1/2)`

`du = 1/2 theta^(-1/2) d theta`

`du = 1/(2theta^(1/2))d theta`

`du =1/(2 sqrt theta) d theta`

`2du =1/sqrt theta d theta`

Expressing the integral in terms of u, it becomes:

`= int sin (sqrt theta) * 1/sqrt theta d theta`

`= int sin (u) * 2du`

`= 2 int sin (u) du`

Then, apply the integral formula `int sin (x) dx = -cos(x) + C` .

`= 2*(-cos (u)) + C`

`= -2cos(u) + C`

And, substitute back  `u = sqrt theta` .

`= -2cos( sqrt theta) + C`


Therefore, `int (sin sqrt theta)/sqrt theta d theta= -2cos( sqrt theta) + C` .

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial