`int sin^4(6theta) d theta` Find the indefinite integral

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integrals are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand

          `F(x)` as the anti-derivative function 

           `C`  as the arbitrary constant known as constant of integration

To evaluate the given problem `int sin^4(6theta) d theta` , we may apply u-substitution by letting: `u = 6theta` then `du = 6 d theta` or `(du)/6 = d theta` .

The integral becomes:

`int sin^4(6theta) d theta=int sin^4(u) * (du)/6`

 Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .

`int sin^4(u) * (du)/6=1/6int sin^4(u)du` .

Apply the integration formula for sine function: `int sin^n(x) dx = -(cos(x)sin^(n-1)(x))/n+(n-1)/n int sin^(n-2)(x)dx` .

`1/6int sin^4(u)du=1/6[-(cos(u)sin^(4-1)(u))/4+(4-1)/4 int sin^(4-2)(u)du]` .

                    `=1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]`

For the integral `int sin^(2)(u)du` , we may apply trigonometric identity: `sin^2(x)= 1-cos(2x)/2 or 1/2 - cos(2x)/2.`

We get:

`int sin^(2)(u)du = int ( 1/2 - cos(2u)/2) du` .

Apply the basic integration property:`int (u-v) dx = int (u) dx - int (v) dx` .

`int ( 1/2 - cos(2u)/2) du=int ( 1/2) du - int cos(2u)/2 du`

                                   `= 1/2u - 1/4sin(2u)+C`

                                  or `u/2 - sin(2u)/4+C`

Note: From the table of integrals, we have `int cos(theta) d theta = sin(theta)+C.`

Let: `v = 2u` then `dv = 2du ` or` (dv)/2= du`

then`int cos(2x)/2 du =int cos(v)/2 * (dv)/2`

                             `= 1/4 sin(v)`

                             `= 1/4 sin(2u)`

Applying `int sin^(2)(u)du=u/2 - sin(2u)/4+C` , we get:

`1/6int sin^4(u)du=1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]`

                           `=1/6[-(cos(u)sin^(3)(u))/4+3/4 [u/2 - sin(2u)/4]]+C`

                           `=1/6[-(cos(u)sin^(3)(u))/4+(3u)/8 - (3sin(2u))/16]+C`

                           `=(-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C`

Plug-in `u =6theta ` on `(-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C`  to find the  indefinite integral as:

`int sin^4(6theta) d theta =(cos(6theta)sin^(3)(6theta))/24+(3*6theta)/48 - (3sin(2*6theta))/96+C`

                         `=(cos(6theta)sin^(3)(6theta))/24+(18theta)/48 - (3sin(12theta))/96+C`

                        `=(cos(6theta)sin^(3)(6theta))/24+(3theta)/8 - (sin(12theta))/32+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial