`int e^x/(1-e^(2x))^(3/2) dx` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integral follows the formula: `int f(x) dx = F(x)+C`

where:

`f(x)` as the integrand function

`F(x)` as the antiderivative of `f(x)`

`C ` as constant of integration.

To evaluate the given integral problem: `int (e^x)/(1-e^(2x))^(3/2) dx` or `int (e^xdx)/(1^2-(e^x)^2)^(3/2)` , we may apply u-substitution by letting:

`u =e^x`  then  `du = e^x dx` .

Plug-in the values, the integral becomes: 

`int (e^xdx)/(1^2-(e^x)^2)^(3/2) =int (du)/(1^2-(u)^2)^(3/2)`

 In that form, it resembles one of the formulas from the integration table. It follows the integration formula for function with roots:

`int dx/(a^2-x^2)^(3/2)= x/(a^2sqrt(a^2-x^2))+C`

By comparing `a^2 -x^2` and `1^2 -u^2` , we determine the corresponding values as: `a=1 ` and `x=u` . Applying the integration formula, we get:

`int (du)/(1^2-u^2)^(3/2) =u/(1^2sqrt(1^2-u^2))+C`

                      `=u/(1sqrt(1-u^2))+C`

                      `=u/sqrt(1-u^2)+C`

Plug-in `u =e^x` on  `u/sqrt(1-u^2)+C` , we get the indefinite integral as:

`int (e^x)/(1-e^(2x))^(3/2) dx =(e^x)/sqrt(1-(e^x)^2)+C`      or    `(e^x)/sqrt(1-e^(2x))+C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial