`int cot^4(theta) d theta` Use integration tables to find the indefinite integral.

Expert Answers

An illustration of the letter 'A' in a speech bubbles

Indefinite integral follows the formula: `int f(x) dx = F(x)+C`

where:

`f(x)` as the integrand function

`F(x)` as the antiderivative of `f(x) `

`C` as constant of integration.

 The given integral problem: `int cot^4(theta) d theta` resembles one of the formulas from the integration table. It follows the integration formula for cotangent function as :

`int cot^n(x) dx = - (cot^((n-1))(x))/(n-1) - int cot^((n-2)) (x) dx` .

Applying the formula, we get:

`int cot^4(theta) d theta =- (cot^((4-1))(theta))/(4-1) - int cot^((4-2)) (theta) d theta`

                  `=- (cot^3(theta))/3 - int cot^2(theta) d theta`

 To further evaluate the integral part:  `int cot^2(theta) d theta`  we may apply  trigonometric identity: `cot^2(theta) =csc^2(theta) -1` .

`int cot^2(theta) d theta =int [csc^2(theta) -1] d theta`

Apply basic integration property:` int (u-v) dx = int (u) dx - int (v) dx.`

`int [csc^2(theta) -1] d theta =int csc^2(theta) d theta - int 1 d theta`

                                     `= -cot(theta) - theta +C`

Note: From basic integration property: `int dx = x`  then` int 1 d theta = int d theta = theta` .

From the integration table for trigonometric function, we have` int csc^2(x) dx = - cot(x)`  then `int csc^2(theta) d theta=-cot(theta` ).

applying `int [cot^2(theta)] d theta=-cot(theta) - theta +C` , we get the complete indefinite integral as:

`int cot^4(theta) d theta =- (cot^3(theta))/3 - int cot^2(theta) d theta`

                           `=- (cot^3(theta))/3 -(-cot(theta) - theta) +C`

                          `=- (cot^3(theta))/3 + cot(theta) + theta +C`

See eNotes Ad-Free

Start your 48-hour free trial to get access to more than 30,000 additional guides and more than 350,000 Homework Help questions answered by our experts.

Get 48 Hours Free Access
Approved by eNotes Editorial